INDUCTION OF REVERSIBLE PROTEIN-LINKED DNA BREAKS IN HUMAN OSTEOGENIC SARCOMA CELLS BY NOVEL CYTOCIDAL COLCHICINE DERIVATIVES WHICH INHIBIT DNA TOPOISOMERASE II IN VITRO: ABSENCE OF CROSS-RESISTANCE IN A COLCHICINERESISTANT SUB-CLONE¹

Kenneth F. Bastow, ^a Hiroshi Tatematsu, ^{b+} Ibrahim D. Bori, ^a Yasuhiro Fukushima, ^{b#}
Li Sun, ^b Barry Goz, ^c and Kuo-Hsiung Lee^{b*}

^aDivision of Medicinal Chemistry and Natural Products, ^bNatural Products Laboratory, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA

^cDepartment of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA

⁺Visiting Research Scholar, Present Address: Pfizer Pharmaceuticals, Inc. Nagoya Biochemical Laboratory, 5-Gochi, Taketoyo-cho, Chita-gun, Aichi 470-23, Japan

*Visiting Research Scholar, Present Address: Nitto Denko Corp. 1-1-25 Schimohozumi, Ibaraki, Osaka 567, Japan

(Received in USA 25 January 1993)

Abstract: Two colchicine derivatives gave dose-dependent cytocidal effects in human osteogenic sarcoma cells. Unlike colchicine, the analogues stimulated formation of intracellular protein-linked DNA breaks, they inhibited DNA topoisomerase II *in vitro*, and their cytotoxic action was not modulated by the P-glycoprotein drug-efflux pump.

Colchicine (1)(Fig. 1), a major alkaloid found in *Colchicum autumnale* has anti-inflammatory and anti-cancer properties,^{2,3} and is used in the treatment of gout and Familial Mediterranean Fever.^{3,4} Since binding to tubulin and inhibition of cellular mitosis probably account for the principal pharmacological actions of 1, efforts at chemical modification have focused on the design of spindle toxins with improved therapeutic properties.⁵⁻⁷ As a result of our continuing investigation of bioactive colchicinoids,^{7,8} N-trifluoroacetyl-1,2,3,10-tetrademethyldeacetyl-colchicine (2)(Fig. 1) and N-(3',4',5'-trihydroxybenzoyl)-1,2,3,10-tetrademethyldeacetylcolchicine (3)(Fig. 1) were prepared and found to have interesting activities not shared by 1. These properties

Figure 1. Structures of 1, 2, and 3

include the ability to induce intracellular protein-linked DNA breaks,⁹ to inhibit DNA topoisomerase II *in vitro*, ¹⁰ and to be cytotoxic, ^{11,12} but not affected by overexpression of P-glycoprotein. ¹³

The syntheses of compounds 2 and 3 are outlined in Scheme I. Hydrolysis of 1 with concentrated hydrochloric acid in methanol afforded 10-demethyldeacetylcolchicine (4), ¹⁴ which, after acylation with trifluoroacetic acid anhydride, ¹⁵ gave 10-demethyl-N-trifluoroacetyldeacetylcolchicine (5). N-Deacetylcolchicine (7) was obtained by hydrolyzing N-trifluoroacetyldeacetylcolchicine (6) which was prepared by methylation of 5 with diazomethane.

Scheme I. Syntheses of Compounds 2 and 3

Condensation of 7 with 3,4,5-trimethoxybenzoylchloride in pyridine at room temperature afforded N-(3',4',5'-trimethoxybenzoyl)-deacetylcolchicine (8) in good yield. Exhaustive demethylation of 5 and 8 with borontribromide in dichloromethane at room temperature gave 2 and 3, respectively. ¹⁶ The structures of all intermediates and final products are secured by spectroscopic and analytical data. ¹⁷

Compounds 1-3 inhibited the growth of human osteogenic sarcoma (Hos) cells, 18 with 2 and 3 being more than three orders of magnitude less toxic than 1. 19 The plating efficiency of cells 12 was markedly affected after brief exposure to cytotoxic concentrations, and LD $_{50}$ values of 14 ± 1 and $18\pm3~\mu\text{M}$ were determined following a one-hour treatment with compounds 2 and 3, respectively.

Under similar conditions, compounds 2 and 3 induced protein-linked DNA breaks⁹ in a dose-dependent fashion, and this effect was rapidly reversed after drug-media were replaced with fresh media (Fig. 2). In contrast, compound 1 at 50 µM gave no effect.

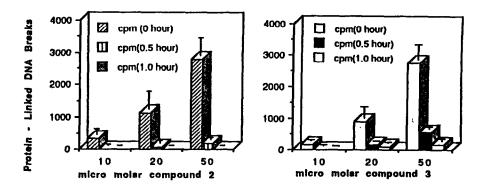
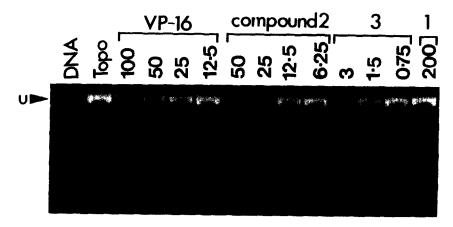



Figure 2. Induction and Reversibility of Protein-Linked DNA Breaks in Hos Cells, Cells were treated with compounds for one-hour, then drug media were replaced with fresh media. Protein-Linked DNA breaks were detected at 0, 0.5, and 1.0 hour after media replacement. Data shows cpm recovered for duplicate treatments each at three drug concentrations.

Since a class of clinically useful DNA topoisomerase poisons is known to cause the accumulation of DNA-enzyme covalent intermediates in treated cells, 20 the effects of compounds 2 and 3 on DNA topoisomerase II *in vitro* catalytic activity was investigated. As shown in Fig. 3, compounds 2 and 3 inhibited enzyme activity, being, respectively, about 2-fold and 17-fold more potent than the epipodophyllotoxin derivative VP-16. In contrast, compound 1 gave no effect at 200 μ M.

Overproduction of a plasma-membrane-associated protein known as P-glycoprotein can confer resistance to a selecting drug as well as crossresistance to a variety of structurally and functionally unrelated drugs. 13 Compounds 2 and 3 were tested against a sub-clone, Hos col^R selected using 1. 22 The resistant cells were 38-fold resistant to 1 and as shown in Fig. 4A, Hos col^R overproduced P-glycoprotein based on a Western blot immunostained using a specific monoclonal antibody. 23 The EC_{50} values for growth inhibition by compounds 2 and 3 were 26 μ M and 28 μ M, respectively, which were similar to the values determined using the parent Hos cells. 19 In addition, 2 and 3 induced similar levels of protein-linked DNA breaks in both cell lines, unlike VP-16 which was about 5-fold less effective in Hos col^R (Fig. 4B).

Figure 3. Inhibition of Hos DNA Topoisomerase II *in vitro* Catalytic Activity. Enzyme²¹ was measured, using the P4 DNA unknotting assay, ¹⁰ in the presence and absence of 2-fold serial dilutions of compounds. The inhibitor VP-16 was included as the positive drug control. "U" shows the position of the unknotted DNA product formed in the reactions.

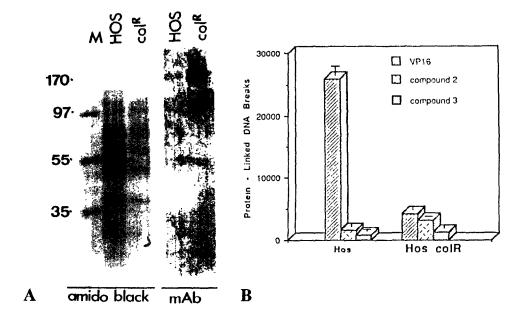


Figure 4. Immunoblot Analysis of P-glycoprotein levels and Induction of Protein-linked DNA Breaks in Hos and Hos col^R cells. A. Plasma membrane preparations were fractionated and transferred to a nitocellulose filter. Total proteins were stained with amido black as a control for sample load and P-glycoprotein was immunolocalized on a duplicate filter using a specific mAb. Markers for molecular mass (kDa) are given in the right margin. B. Cells were treated with 20 μ M compounds for one hour and protein-linked DNA breaks were then detected. The data shows cpm recovered for duplicate treatments.

Acknowledgements: This investigation was supported by a grant from the National Cancer Institute No. CA-54508 (K.H.L.)

References and Note

- 1. Antitumor Agents 140. For part 139, see ref. 7.
- 2. Housset, T. Ann. Dermatol. Syphiligr., 1967, 94, 31.
- 3. Zweig, M.H.; Chignell, C. F. Biochem. Pharmacol. 1973, 22, 2141.
- 4. Zemer, D.; Revach, H.; Pras, M.; Modan, G.; Schor, S.; Sohar, E.; Gafin, J. New Engl. J. Med. 1974, 289, 932.
- 5. Brossi, A. J. Med. Chem. 1990, 33, 2311.
- Brossi, A.; Yeh, H. C. J.; Chrzanowska, M.; Wolff, J.; Hamel, E.; Lin, C. M.; Quin, F., Suffness, M.; Silverton, J. J. Med. Res. Rev. 1988, 8, 77.
- 7. Sun, L.; Mcphail, A. T.; Hamel, E.; Lin, C. M.; Change, J. J.; Lee, K. H. J. Med. Chem. in press.
- Tatematsu, H.; Kilkuskie, R. E.; Corrigan, A. J.; Bodner, A. J.; Lee, K. H. J. Nat. Prod. 1991, 54, 632.
- 9. Rowe, T. C.; Chen, G. L.; Hsiang, Y. H.; Liu, L. F. Cancer Res. 1986, 46, 2021.
- Liu, L. F.; Rowe, T. C; Yang, L.; Tewey, K. M.; Chen, G. L. J. Biol. Chem. 1983, 258, 15365.
- 11. Crumpton, S. C.; Goz, B.; Ishaq, K. S. Anticancer Res. 1988, 8, 1361.
- 12. Goz, B.; Carl, P. L.; Tlsty, T. D. Mol. Pharmacol. 1989, 36, 360.
- 13. Pastan, I.; Gottesman, M. New Engl. J. Med. 1987, 318, 1388.
- 14. Fernholz, V. D. H. Angew. Chem. 1953, 65, 319.

57.07, H 4.43, N 2.61.

- 15. Capraro, H. G.; Brossi, A. Helv. Chem. Acta 1979, 62, 965.
- 16. Vickery, E. H.; Pahler, L.G.; Eisenbraun, E.J. J. Org. Chem. 1979, 44, 4444.
- 17. Compound 2: $[\alpha]_D^{20}$ -304° (c 0.11, EtOH); ¹HNMR (Acetone-d₆) δ 2.22-2.50 (m, 4H, H-5,6),
 - 4.77 (dd, J = 11.3, 5.92 Hz, 1H, H-7), 6.42 (s, 1H, H-4), 7.36 (d, J = 11.9 Hz 1H, H-11), 7.56 (s, 1H, H-8), and 7.78 (d, J = 11.9 Hz, 1H, H-12); Anal. ($C_{18}H_{14}O_6NF_3 \cdot 2H_2O$) calc. C 49.89, H 4.19, N 3.23; found C 49.95, H 3.98, N 3.11.
 - Compound 3: mp. 234-236 °C(dec); $[\alpha]_D^{20}$ -153° (c 0.10, EtOH); IR (KBr) 3260 (broad peak,
 - OHs) and 1600 (CO) cm⁻¹; UV(EtOH) 246 (ϵ 32000) and 350 (ϵ 17000) nm; ¹HNMR (Acetone-d₆) δ 2.22-2.48 (m, 4H, H-5,6), 4.85 (m, 1H, H-7), 6.41 (s, 1H, H-4), 7.04 (s, 2H, H-2',6'), 7.25 (d, J = 11.8 Hz, 1H, H-11), 7.68 (d, J = 11.8 Hz, 1H, H-12), and 8.15 (d, J = 6.83 Hz, HN-7); Anal. (C₂₃H₁₉O₉N 3/2H₂O) calc. C 57.50, H 4.62, N 2.92; found C
- 18. Chemically transformed human osteogenic sarcoma (TE85, clone F-5), American Type Culture Collection No.: CRL1547.

- 19. The growth inhibition assay was done according to a published procedure 11 and EC₅₀ values of 8.25 ± 0.75 nM, 28μ M, and 21μ M were determined for compounds 1-3, respectively.
- 20. D'Arpa, P.; Liu, L. G. Biocimica. et. Biophsica. Acta. 1989, 989, 163.
- 21. DNA topoisomerase II was prepared from Hos cells using the procedure described by Kashiwada, Y., Nonaka, G-I.; Nishioka, I.; Lee, K. J-H.; Bori, I. D.; Fukushima, Y.; Bastow, K. F.; Lee, K. H. J. Pharm. Sci., in press.
- 22. The Hos col^R cells were selected in two successive steps using 25 nM then 75 nM of 1, and the EC₅₀ value of 1 for the resistant su-clone was 315 ± 15 nM.
- 23. Plasma membranes were prepared using the buffers of Yang, L-Y.; Trujillo, J. M. Cancer Res. 1990, 50, 3218. Fifty four microgram amounts were separated by electrophoresis on a 7.5% SDS-PAGE gel and blotted using standard procedures. P-glycoCHEKTM C219 mAb was obtained from Centocor Diagnostics, Centocor, Inc., Malvern, PA 19355 and was used for staining according to the manufacturers recommendations.